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1. Introduction

The problem of computing dependabilit. measurcs (f repairable systems with general failure,

repair and maintenance proces,,c is a hard problem eithc by analylical or h\ numeical methods.

Such s~stems, in general, cannot be modelled by Markov or even serni-Markov processes HARP

[ 3 ] solvcs large models with general failure time distributions by creating a non-homogeneous

Markov chain model of the system and then sol ing the corresponding difterential equations nu-

mcrically. The technique has been applied to non-repairable systems only (transient recoverics are

allowed. but they arc approximated by instantaneou, transitions). Furlhermore. only trnsient

measures (e.g., reliability) are estimated. CARE-Ill [ IR ] uses numerical integration methods to

solve similar models.

The goal of this paper is to model systems with general failure, repair and maintenance processes,

and solve them for both transient (e.g., reliability and mean time to failure) and stationar. (e.g.,

steady-state availability) measures. in relatively simple cases. one could obtain the I lplace Trans-

form of dependability measures for such models and numerically invert them to obtain the desired

results [ 14 ]. I lowever. these methods are limited to small models and are prone to unboundable

numerical errors.

An alternative approach is to use Monte Carlo simulation. The advantage of this method is that

arbitrary system details can be modeled, and furthermore, all the system states need not be gener-

ated. The disadvantage of this approalch is that stand;id simulation takes very long time to estimate

dependability measures with reasonable accurac\ lbecaue system failure events arc ver. rare in

highly dependable systems [ 4 ]. When the failure and repair time distributions are exponential, the

impotianer sampling technique has been used s'icce',;fuilly in the past to reduce simulation run-

lengths significantly [ 2, 10, 12 ]. Basically, the sytem failure events are forced to occur more often

by increasing the failure rates: unbiased estimates of dependability measures are obtained by

multiplying the value of the measure on a sample path by the likelihod ratio of the sample path.

The likelihood ratio for a given sample path is the ratio of the probability of the sample path under

the original distributions (e.g., with the original failure and repair rates) over the probability of the

same sample path under the new distributions (e.g., with the new failure and repair rates).

In this paper, we extend the applicability of importance sampling to non-Markovian systems with

general failure, repair and maintenmice processes. For general dirrete-event systems, importance

ampling has been discussed in [ 5, 6 ]. Basically. a Generali7ed Semi-Markov Processes (GSMPs)

formalism is used to represent such systems, and the likelihood ratio of a sample path is written in

terms of the various probabilify distributions (e.g . failure. repair and maintenance distributions) in



the original and the new (simulated systems. I lo%%'. cr. in [ 5, 6 1 thc. did not eonider the dteign

and implementation of specific inportance sampling diilhuttvton that arc required in older to oh.

tain effective variance reduction in non-Markovian models of highly dependahle system,. One

possible way to appropriately implement importance sampling, which we propose aid use in this

paper, is accomplished by canceling and rescheduling previously schedulcd events. For example.

when one component faileb in a system with a redundant component pair, we speed up the failure

of the other component so that it fails with high probability before the repair of the first compo-

nent. This involves cancelling the originally scheduled failure event for the second component and

rescheduling it using a new failure distribution with a emailcr mean time to failure.,

In Sections 2 and 3 we give it concise descriptirn of di;crete-event systems, which is appropriate for

our purpose in this paper: namely, to formc-Iy rcprcesnt the probhity of a sample path. This

yields a represcntation for the likelihood ratio which i, the key to importance sampling.

In Section 4, we give the basic estimators for some comronly used measures in highly dependable

systems. such as reliability, steady-state availability and oiean time to failure. A simple example

of a two-components system i; used to explain thes, mnca-ircs as well as the importance sampling

technique used to estimate them. In Section 5, we di'cuqs the implementation of these methods in

a software tool which we used to generate and ;imulatv large models. This tool is based on the

CSIM package C 15. 16 ]. In Section 6, we use three examples to illustrate the effectiveness of the

propod importance sampling techniques. First, we use a small example to experiment with some

heuristics for selecting the new probability distributions which make the typically rare system fail-

ures occur more often. Second, tlhes heuristics are applied in a large example to show that orders

of magnitude reduction in variance can he obtained. Wc use exponential failure and repair dis-

tributions in this example to ascertain the correctne , of the results obtained by comparing them

against numerical results obtained fiom the SAVE package C 7 ]. In the third example. we use

Weibull failure distribution and periodic maintenance for all individual component, in the system.

We study the effect of the hazard rate (i.e., increasing. decreasing and constant failure rates) on the

optimal maintenance period. Such studies cannot be perlormed with existing analytical or numer-

ical methods. In Section 7 we give conclusions and some directions for future research.

2. Discrete-Event Systems

In this section we give some notation and basic properties of discrete-event systems, which will

assist in representing the probability of a sample path and the likelihood ratio required for impor-

tance sampling in simulations of stich systems. A precise mathematical framework for thc study

of discrete-event sy-tems is giveti by (lynn in C 5 ]: he gives a generalized scmi-Mnrkov process
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(GSMl) fonnali~ni of discretc-even svstcm. I lore, we Ri%'c an alternative conciqc dcscription ri

discrete-evcnt , stems. which is apillopriate and -ufflcicnl foir our puripoe. In otur dcwcription wc

have left out ,ome of the details and gencralities which arc not necdcd for the devcocpmcnts in this

paper.

A discrete.cvcnt systcm is characterized by a set of events E which can trigger transitions of its state

and a set Z of integer-valued output statc vectors ( Z i,; povtibly a countably infinite set). With each

event eE we associate a clock. The reading r(e) is the "remaining lifetime' of clock '. i.e., the time

remaining for clock e to expire. c(e) = oo if clock e is inactive. The choice of the output (observable

or measured) state vector in a discrete-evcnt system depends on the application at hand and the

desired level of detail.

The internal state of a discrete-cvent system at a given time is completely determined by its output

state and the set of active clocks (i c.. the set of events which can trigger a transition to another

internal state) with the associated clock readings. Upon the i - th transition, let ZjeZ be the output

state vector and EjcE be the set of active clocks. e(E) is a vector with the associatcd clock readings.

Then X, = (Z,. cE,)) is the internal state of the discrete-event system upon the i - th transition.

Notice that the output state and the set of active clocks characterizing the internal state change only

in response to transitions (event%), while the clock readings are continuously changing at the same

rate (in general, different clock rates may be assumcd. wse e.g.. [ 5 ]). It is typical in discrete-event

systems that the output state does not change between transitions; for extuhple, the number of

customers in a queueing system. h'lerefore, the output state trajectory of a discrete-event system

is completely described by Oe output stale at transition times of the internal state. I et ti, i > 0, be

the time of the i - th transition, with to = 0. Then 7, -- t1+1 - i is the time between the i - li and

the (i + 1) - th transitions. let Z(I) denote the output Ptate at time t, then (7(i). i > I) is the output

state trajectory, and Z(i) = z. ir t, g t <

As indicated above, we only consider the internal state sequence at tranilion times,. since this is

sufficient to determine the output state Irajectory of the discrete-event system. A sample path of

the discrete-event system up to the n - th transition i. denoted by the sequence Xo., of internal

states at transition times,

X()M = (X0, X,. .... X,).

let e = argmin( (e)), i1 0. Then e7 is the clock which triggers the (i + I) - th transition and

7- = c(e . The internal state X1+1 = (Z7+ , CI+t(Ei+,)) upon the (i + 1) - th transition is deter-

mined hy the sequence Xtj and may depend on tINh complete history of the system. The set of

active clocks E.+, upon the (i + 1) .- th transition is d.,termined by
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where A, is the set of clocks canceled (abortcd) upon the (U + 1) - th transition and NJ+ I is the set

of nzw clocks activated upon the ( i+ 1) - th transition. The set of clocks A, and NJ+, and the

output state Z1+1 are determined probabilistically, depending on the trigger event e; and the sc.

quence X0,. Therefore, the (i + I) - th transition triggered by e' yields the output state Zj+ I and

the active set of clocks E1+1 with a probability denoted by pi+,(Z,+i, .;+,; el). The subscript i+ I

of p symbolizes the dependence on the sequence X0 . (routing in qucueing networks is an obvious

example for the use of these transition probabilities).

We denote byf(t; e) (rcsp. T(; ) ) the probability density function (rcsp. the complementary dis-

tribution function) of the (condilional) 'rcmainitg liitime" of clock eiE, at the i - th transition.

The subwript i symbolizet the dependence of this probability density function (in the history of the

system through its internal state sequence Xoj. For example, if clock e was originally schcdulcd

using a probability density function .fl ; e) and if the age of the clock at the i - th transition is a,

then the density of the remaining lifetime Iis /i(t; e) = At + a: e)/1j(a; e). Similarly,

Ft(t; e) = /-(' + a; e)IF(a; e). If clock e is newly scheduled at the I - th tiansition, then the age is

0, so that j(t; e) = J(t; e) and Ti; e) = F(t; e) . I ct+, be the set of old clocks which continue

to be active upon the (i+ 1)- th transition, i.e., ()+ I = +I - NJ+ 1, 1 0 . The clock reading

c(e), eLO + , is updated as follows: c(e) - r(e) - 7. Upon the (i+ I) - th transition, the proba-

bility density function and the complcmentary distribution function of the remaining time on clock

etOL+1 are changed to reflect the elap.ed time on this clock, i.e., for all ee0 14 I

f+,(t;e) J ft + 71: e)ljf'I7: r) , (2.1)

r =,(e PX1t + 7 :0 XT.e). (2.2)

Notice that these modified distributions are not needed to determine the clock reading-

c(e), ee.o+t, since, as stated above, we can use the remaining lifetime as the updated clock reading

for an old clock. lowever, they are used to dsecribc the probability of a sample path and the

likelihood ratio, as we shall see in the following.

Given that the internal state of the discrete-event system is X, at the i - th transition, we can write

the probability density (likelihood) that the next internal state is X+ I at the (1 + 1) - th transition.

We denote this probability by P(Xj+ X) , then
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"(X~,.) = fA 1-.- 'I )P1+ I(Z1lE+ 1 ;1, H F Ij(74;e). (2.3)
ea, - le

It follows that the likelihood of a sample path X0 ., , up to the n - th transition, is given by

n-I

P(X0.) - Ij T;e')p,+,(Z, ,, E1~1;e1 ) H- FA7T; e) . (2.4)
Iwo f*,.-,'

3. Importance Sampling in Simulations of Discrete-Event Systems

In this seclion. we discuss importance sampling which can be used to obtain a Ognificant variance

reduction over standard simulation when estimating dependability measures. lhc basic idea of

importance sampling is to simulate the system under different probability distnruons, so as to

appropriately and quickly move the system towards failure. Since the simulated system is dynam-

ically different from the original system, a correction factor is needed to compensate for the -esulting

bias. This correction factor is called the likelihood ratio and must be used with importanc, sampling

to obtain unbiased estimates.

Consider a .mulation of a discrete-event system for the purpose of estimating the expected value

of a particular performance measure, say M. Let AM(Xo,.) be the value of the measure on a sample

path XO,N , where N is a stopping time relative to the internal state sequence, i.e., I(N = I) is a

function of X0,1 (/( - ) is the indicator function which equals one if its argument is true; otherwise

it equals zero). In the original system, the likelihooul of the .ample path XnN is P( Xn,, ) as given

by F.quation (2.4). To implement importance sampling, we simulate the system with a different

likelihood P'(-) for is sample paith. For P'(•) , it is necessary that the following must hold for all

XONA,

P'(XO,N) > 0 whenever M(Xo,N) P(XO.N) > 0. (3.1)

Under P( e), the expectation Fp(M) can be expressed as follows

EP(Mf)= E M(XQN) P(XoN)

= Z M(XoN) L(X.N) P'(XON) (3.2)

VXo.N

- E(Af 1.),
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where FI",,(A1 I.) is the expectation of A 1. under P'( o). The likelihood ratio
L(XI,K) - P(XjN)IP'(Xo.N) is the ratio of the simpic path likelihoods under the origin:,! and the

new distributions, P and P' , respectively. The use of the summation sign in the above equation is

not quite precise, since the sample space is uncountable infinite, however, the summation can be

interpreted as an integral with respect to an apprepriate probability measure to make this fully rig.

orous.

Let/ t; e), T'(t; e), ea., and p',+(Z,+, F14,1; e1) be the probability distributions, in the simulated

system, corresponding to/f; e), rA'; e), eaE and pl+1(Z,+1 , E:+1; el) in the original system. These

distributions should be chosen appropriately, so as to favorably bias the dynamics of the system

while making sure that the condition in Equation (3.1) is satisfied. 1 he rules for updating the now

quantities,f,( e ; e) and TI( . ; e), at transition times are analogous to those for updatingfg ; e) and

F(. , e) given in Equations (2. 1) and (2.2). The likelihood ratio associated with the sample path Xo.N

is given by

L(XO.N)=II 1 •11 (3.3)t,.o ' : • " e)p= P~(tl ~~ , e! ) ,l-:,- I

The above equation is the basis for importance sampling in discrcte-event systems. Rather than

replicating the r.v. M ( X0,N ) under P to estimate E,(Af), we replicate the r.v. M(XO'N) L(XON)

under P' to estimate E,(M L), which is equal to E,(AI). When P' is chosen appropriately, signif-

icant reduction in the variance of the r.v. M L, under P', can be achieved (compared to the variance

of the r.v. M under P). This choice depends on the model at hand and on the measure to be esti-

mated.

Notice that Equation (3.3) allows us to update the likelihood .atio at transition times in simple

multiplicative manner. Notice also that at any transition we can actually change the values of any

active (old and new) clock according to some chosen. e-scntially arbitrary, new distribution. This

is equivalent to cancelling an active clock and rescheduling (i.e., resampling) its remaining lifetime

from the new distribution. We illustrate this by the following: Suppose that clock e is activated at

the i - 1h tran-stior, and that we assign a value to this clock according to the probability density

function fl ; e) . At the (i + I) - th transition, we decide to reschedule clock e, thus we assign to

its remaining lifetime a new value y' according to a new probability density function f( • ; e) .

Further, we suppose that clock e continues to run at the (I + 2) - th transition and it expires at the

(I + 3) - th transition. In effect, clock e has a total lifetime T + jy'. According to Equation (3.3),

the contribution of clock e to the likelihood ratio at the ( + I) - th transition i.



Using Equations (2.1) and (2.2), the contribution at the (i + 2) - th transition is

Fi+,(T+,; e) F(Ti + 7 .,; e)lF(r; e)

F'l+i(T1+1; e) F'(71+1; e)

Using Equations (2.1) and (2.2), the contribution at the (I + 3) - th transition is

f,+2(rT+2; e) J(71 + y,'; e)1/ (T + Tj+,1; e)
/'i+2(7*1+2; e) J '; ' ,r)1'(T'i+j; c)

It follows that the overall contribution of clock e to the likelihood ratio between the i - th and the

(i + 3) - th transitions is

flT, + y' e)
T(7'; e)f (p'; e)

In the above equation, notice that the numerator ik simply the likelihood of the total lifetime

(T + y') of clock e under the original probability density function A. ; e), while the denominator

is the likelihood with rescheduling.

As an example to show how importance sampling can be implemented, let us consider a machine-

repairman model with two components of the same type and one single sener FCFS repair facility.

Each component has general failure and repair distributions. The system is initially operational,

with all components as good as new, and it continues to be operational as long as at least one

component is operational. In a highly dependable systcm, a component's mean time to failure is

usually several orders of magnitude larger than its mean time to repair. Therefore, a system failure

is a rare event. Consider the estimation of a dependability measure, such as the unreliability, using

the replication method of simulation. Clearly, if we use standard simulation, a very large number

of replications is needed to achieve a reasonably tight confidence interval. This implies a very long

simulation run. Importance sampling is accomplished by biasing the dynamics of the system so

as to make its typical failures occur more frequently. One possible heuristic is what we call dynamic

importance sampling (DIS) C 2, 10 ]; it is described as follows: as soon as one of the two com-

ponents fail, we accelerate the failure of the second component, either by rescheduling it using a

new (accelerated) distribution ot by increasing its clock rate. Increasing the failure clock rate is

equivalent to rescheduling with a new distribution obtaincd by scaling the conditional original dis-

7



ttibution. A reasonable heuristic choice for the nc% distribution is obtained by appropriatcl. qcal-

ing the original distribution, su'h that thc new failure "rate" is of the same zordcr of magnitude as

the repair "rate" [ 2 ]. By rescheduling the failure of the second component, we arc also inc-casing

the probability of a system failure (i.e.. both components unopcrational). If the second component

fails while the first is in repair, we have a system failure (this is a stopping time for a replication

when estimating the unreliability). If the first component is repaired before the second component

fails, both components become operational and we must reschedule their failures using the original

distributions. This is crucial in order to appropriately move the system only towards a likely path

to failure.

4. Dependability Measures

In this section we discuss the estimation of some measure. which are commonly used for the eval-

uation of highly derendable systems. These measures can be classified as stationary or transient.

Stationary measures are deteinined by the long-run (or steady-state) behavior in repairable systems;

they are independent of the initial state. The steady-state availability is a common stationary

measure. Transient measur.s are determined by the transient behavior in repairable and non-

repairable systems; they depend on the initial state. It is usually assumed that the system starts with

all its components fully operational. The system reliability and the mean time to failure (MTTF)

are common transient measures which we consider in this section. Instantaneous availability, dis-

tribution and expectation of interval availability are examples of other transient measures: the esti-

mation of these measures in Markovian models is considered in [ 10 ].

As a running example, we will consider the machine-repairman model (described in Section 3) to

explain our ideas and to numerically illustrate the effectivcness of importance sampling for the es-

timation of dependability measures.

4.1. System Reliability

In this section we consider the estimation of reiiability in non-Markovian discrete-event systems

using simulation and importance sampling. No assumptions are made concerning the distributions

of time to failure and time to repair of individual system components. The system is initially in a

state with all its components operational and as good as new. Let TF be the time at which the

system first entcs a failure state. "rhe system reliability R(t) is defined as the probability that the

system does not fail in the interval (0, t), i.e.,

R(i) r= P(Tr > t) = 1i(1(7'r > t)) , (4.1)



where I(, ) is the indicator function. The method of replications is the typical simulation method

for cslimaling the reliability. In eaich replication we simulate the system until either a failure occurt

or thc time interval exceeds t. Let it, be the number of replications. Thc reulting estimate for the

unreliability U() is given by

U/ = I - R(t) -- 7 t), (4.2)

where T F, is the time to failure at the i - th replication and 1(Tr, t)is the value of the indicator

function. Clearly, if we use standard simulation in a highly reliable system, then the value of the

indicator function is zero in all but a few replications. A very large number of replications (i.e., a

very long simulation) is needed in order to obtain an estimate with a tight confidence interval. Im-

portance sampling. as described in Section 3, is vcry effective in improving the efficiency of such

simulations. Let N, be the stopping time in the i - th replication, i.e., the number of internal state

transitions until either a system failute or the first transition to occur after time t. The resulting es-

timate is unbiased and is given by

Pt,

1(7.r, g 1) L(Xn. IV), (4.3)
lad

where L(X0 . N ) is the likelihood ratio as given by l quation (3.3).

It is important to mention that Ibrcing [ 12 3 can he combined with failure biasing (described in

Section 3) to estimate reliability. I's is particularly useful when I is small so that a failure is un-

likely to occur in the interval (0, t). In the machine-repairman model of Section 3, forcing is ac-

complished by scheduling component failures using the original distribution conditioned so that a

failure is guaranteed to occur before time t. Once a failure occurs, the second component is re-

scheduled using an accelerated distribution. In each replication, forcing should be done every time

both components become operational.

In Markovian models, conditioning out the holding time in the initial (fully operational) state [ 10

1 has also proven quite effective in improving the efficiency of simulations to estimate transient

measures. However, extending this technique to systems with general failure time distributions is

difficult.

To illustrate the feasibility and effectiveness of importance sampling (with rescheduling) to estimate

system reliability, we consider the machine..repainnn example (of Section 3) with a two-stage

hyperexponcntial failure and repair distribulions. A two-stage hyperexponential failure time is

9



generated from an exponential of paramcter ) witff, a prcbability qt and from an expone ntial of

parameter A2 with a probability I-qf. Thc parameters of the failure distribution are

qf = .9 , A I = .001 per hour and ) 2 = .01 per hour. We have selected relatively high failure rates

so that tandard simulation could provide us with reasonable estimates for the purpose of com-

parison. The parameters of the repair distribution are q, = .9,jij = I per hour and 12 = 10 per

hour. For importance sampling, we une -,z accelerated failure distribution which is the same as the

original distribution with its rates scaled up (whilc other choices are also possible, determining the

optimal is an open rese.drch problem). The parameters of the accelerated failure distribution are

q'f = .9, A', = .5 per hour and A'2 = 5 per hour.

For the interval between 0 and 10 hours, a very accurate estimate of the unreliability U(10) is ob-

tained numerically using the SAVE package [ 8 ]. For the purpose of comparison, we have also

used standard simulation as well as importance sampling, each for a total of 12R000 simulated

events. The numerical and simulation estimates arc as follows (with the 90% half-width confidence

interval as a percentage of the point estimate):

Numerical: 5.775 x 10- 5

Standard simulation: 4.737 x 10" S- 94.98%

Importance sampling: 5.560 x 10- 5 + 7.89%

Notice that by using importance sampling we get more than 10 times improvement in the confi-

dence interval, which is equivalent to more than 100 times reduction in the simulation run-length.

4.2. Steady-State Availability

The steady-state availability is defined as the long-run fraction of time the system is available. It is

typically used as a metric for evaluating repairable systems. In Markovian models, regenerative

simulations are typically used to estimate the steady-state availdbility [ 2 ] (the state in which all

components of the system are operational is usually chosen as a regeneration point). As a conse-

quence, a simple estimator for the steady-state unavailability UA follows from a basic result of re-

newa! theory [ I J

UA = -- , (4.4)

where D and T are the total 'down" time and the total "cycle" time between regenerations, re-

spectively.

I Infortunately, in non-Markovian models with general failure and repair distributions, a regenera-

tive structure may not be present (foir conditions under which a discrcte-event system or a GSMP

10



is regencrati~c the reader is referred to [ I1 ]). Let us again consider the machinc-rcpairman model

with gencral failure and repair distributions. We consider two cases in which a regenerative structure

can be recognized. In the first case, we assume that the failure time of individual components is

exponentially distributed. Therefore, a regeneration point is readily identified at repair transitions

after which all components become operational. In the second case, regenerations occur as a result

of a periodic (and deterministic) maintenance on all components. 'This is true for general failure

and repair distributions, since after maintenance a component is as good as new. In this case, a

regeneration point is identified at the lowest common multiple of all maintenance periods, provided

that no component has failed since its last maintenance. At these points, all components are op.

erational and the conditional distribution of the time to failure of each individual component is the

same for all regenerations and is conditionally independent of the past.

If a regenerative structure can be recognized in a discrete-event system, then regenerative simulation

can be used to estimate the steady-state unavailability by using Equation (4.4). Let n, be the num-

ber of regeneration cycles used. Then an estimate of 114 is given by

flC

A
= D° , (4.S)

n,

where I), and T are the total "down" time and the "cycle" time in the i - th regeneration cycle, re-
A A

spectively. 1) and T are estimates of E(D) and F(7), respectively. For highly available systems,

system failure is a rare event. lherefore, standard simulation is very inefficient for estimating the

numerator E(D), since only a very small fraction of regeneration cycles will contain failures. Again,

importance sampling provides an efficient solution by biasing the dynamics of the system appro-

priately, so that a likely path to failure is encountered more often. Notice that the denominator can

be estimated efficiently using standard simulation; in fact, using importance sampling to estimate

the denominator E(7) may increase its variance. Therefore, a better estimate for the steady-state

unavailability can be obtained by using measure specific dynamic importance sampling (MSDIS)

3, while independenttly using standard simulation to estimate the denominator E(). The optimal

allocation of the simulation run lengths for estimating the numerator and the denominator is con-

sidered in [ 10 ]. Notice that here, regeneration times are used as stopping times. Let n, -nd nd

be the number of regeneration cycles used to estimate the numerator and denominator, respectively.

For the numerator, estimates for the mean and the variance are given by



A -,= DI /.(xo,,,O
'

n. (4.6)

A2 V) 2 A 2or(DL) L- L l ^ 2
1=1

where at the i - th replication, D, is the value of the numerator and N is the stopping time.
L(X0 . v,) is the associated likelihood ratio as computed from Equation (3.3). Similar equations hold

A A2

for the mean and the variance of the denominator, T and a (7), respectively, except here the like-

lihood ratio is identical to one (since we are using standard simulation). It follows that UA has the

following estimates for its mean and asymptotic variancc [ 10 ] (for large n, and nd):

A

UAL= -

7.
A2 ^2 (47)

0, Y 1A 1)  A'( + (u,) -,(A= 2 (1 (7
fi (li- )~

with ? = nI(n,, + nd).

Let us again consider the machine-repairman exampki in Section 4.1 to illustrate the effectiveness

of importance sampling to estimate the steady-state unavailability. We change the failure time dis-

tribution to an exponential of a parameter A = .001 per hour; this is done to obtain a regenerative

system for which we can use a regenerative simulation. For importance sampling, we use accelerated

failures from an exponential distribution of a parameter A' = .5 per hour.

An accurate estimate of the unavailability IA is obtained numerically using the SAVE package [

8 1. We give estimates using standard simulation and importance sampling, each for a total of

128000 simulated events. The results are as follows (with the 90% half-width confidence interval

as a percentage of the point estimate):

Numerical: 1.799 x 10-6

Standard simulation: 1.623 x l0 + 29.7(1%

Importance sampling: L.17 x 10-6 ± 2.61%

sampling. In Section 6 we present experimentation results for estimating the steady-state unavail-

ability ,n a machine-repairman model with periodic maintenance and in a large model of a com-

puting system. For some experiments, we select typical failure rates in the range of 10-5 to 10-.

In this range, standard simulation prnduces meaningles results, while the estimates obtained using

importance sampling converge as quickly as thow. in the above example.
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4.3. Mean Time to Failure (MTTF)

MIT'F is typically thought of a- a transient measure, since it depends on the initial state of the

system. Assuming that the system is initially in a state with all its components operational and as

good as new, the MIT is defined as the expected tiic the system first enters a failure state. The

replication method of simulation is typically used to estimate the MTTF. Again, standard simu-

lation of highly dependable systems means very long replications and, hence, excessively long sim-

ulation runs. When the replication method of simulation is used, importance sampling may

actually increase the variance of lhc MTTF estimate; !his is because a likely sample path to failure

in the biased system is, roughly, much shorter (in terms of simulated time) than a likely sample path

in the original system.

If the initial state of the system is a regeneration point, then a ratio representation for the WUiT

is possible [17],

MTTF - P(7T < 7) * (4.8)

where r ( rnin(TF, 7)) is the minimum of the time to system failure (Tr) ind the cycle time

(7). P(Tr < 7) is the probability that a system failure occurs before a regeneration. In the above

tatio representation, both the numerator and the denominator can be estimated using regenerative

simulations. The numerator E(r) can be estimated efficiently using standard simulation. I lowever,

in highly dependable systems, the denominator P(71 < 7) is a very small quantit); hence, it can

be estimated much more efficiently using importance sampling. I lere alto, NIS DIS is recommended

for estimating the MTIF, in which the numerator and the denominator are simulated independ-

ently.

Unforlunately, a regenerative structure may not be exhibited in a general discrete-event system; this

limits the validity of the ratio representation for the M'I-I, and hence the usc of importance

sampling, to only those systems in which the initial state is a regeneration point.

I -t us again consider the machine-repairman model with general failure and repair distributions.

In Section 4.2 we have recognized two case-s in which the system exhibits a regenerative structure.

In particular, if the time to failure of individual components is exponentially distributed, then the

initial state, with all components operational, is a regeneration point. In this case, the ratio repre-

sentation of the MTFF is valid and importance sampling can be used to estimate P(TF < 7).

Again, the heuristic for importance sampling is as described in Section 3, except that here, the

stopping time is either the regeneration time or the time to system failure, whiche' er occurs first.
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let rd be the number of cycles used. and N, be the -0opping time in the i - th regencration cycle,
A

The resulting estimate PF,. of P(r <: 7) is given by

" 1 E
PF = -- I(To < 7) i.(X0 N) (4.9)

where I(TF. < T) and L(X0. N,) are the indicator function and the likelihood ratio (from Equation

(3.3)), respectively, evaluated in the i - th regeneration cycle. The estimate T of E(T) is obtained

independently using standard simulation. The resulting estimates for the mean and variance of the

M17F are computed from equations similar to Equations (4.6) and (4.7) for the steady-state una-

vailability LIA.

Here also we consider the machine-repairman example in Section 4.2 to illustrate the effectiveness

of importance sampling to estimate the MTTF. Notice that the failure time distribution is assumed

to be exponential with a parameter ;. = .001 per hour. We obtain a regenerative system for which

the ratio representation is valid; thus we can use regenerative simulation and importance sampling.

Again, we use accelerated failures from an exponential distribution of a parameter A' = .5 per hour.

An accurate estimate of the MTTF is obtained numerically using the SAVE package [ 8 1. In the

following we also give estimates using standard simulation and importance sampling, each for a

total of 128000 simulated events (with the 90% half-width confidence interval as a percentage of

the point estimate):

Numerical: 5.5 10 x l05

Standard simulation: 6.039 x 10 22.60%

Importance sampling: 5.450 x 105 - 1.96%

We obtain more than 10 times improvement in the confidence interval by using importance sam-

pling.

5. Implementation Issues

In this section we consider the implementation of the variance reduction techniques described in

the previous sections. We have implemented these techniques using CSIM [15,16], which is a

process-oriented simulation language based on the C programming language. In a process-oriented

simulation, a model is defined as a collection of interacting processes. Each process is an inde-

pendent program ,,hich runs in parallel with the other processes, with a main program synchro-

nizing all of the processes and controlling the intezactions between them. For example, in the

reliability system simulations which we consider here. a separate process is created for each indi-
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vidual componcalt of the system. Fach process simulates the failures and repairs of its respective

component. In our models soIhcd with CSIM, we only consider steady state unavailability, which

we estimate using regenerative simulation.

We define an up cycle to be a segment of the sample path between two successive times when a

component comes out of repair or scheduled maintenance and finds all other components opera-

tional. As we will see later, there may be more than one up cycle in a regenerative cycle.

In models of highly reliable systems, the repair rates of the components are typicaly orders of

magnitude larger than the failure rates. A method of implementing importance sampling is to re-

schedule events in order to bias the system towards the failed state. This is called failure biasing.

When using importance .ampling, we want to cause the system to fail using the most likely path

to failure. 'his suggests using the following strategy for implementing failure biasing. After the first

component failure in an up cycle, we reschedule all of the other components' failure times by gen-

crating new remaining lifetimes using specified biased distributions. The biased distributions are

selected so that the probability that some operating component fails before the component in repair

completes service is in the range of .1 to .5, thus greatly increasing the probability of a system fal-

ure. Until either a system failure occurs or we reach the end of an up cycle, we continue to schedule

all failure lifetimes using the biased failure distributions. Once we reach the end of an up cycle,

we reschedule the remaining lifetimes of all components using the original failure distributions and

repeat the entire process. lowever, if we reach the failed state during the time failure biasing is

activated, we immediately reschedule all of the remaining lifetimes of the operational components

using the original failure distributions and do not use failure biasing for the rest of the regenerative

cycle. By doing this, we ensure that the probability of two system failures occurring in one regen-

erative cycle remains small. For continuous time .Markov chains the discrete time conversion of

the above strategy was shown to be an effective technique in [2, 9].

As an alternate approach to rescheduling failures, one can actually alter the rates at which the clocks

associated with the lifetimes of the components advance. In order to implement importance sam-

pling in a manner similar to rescheduling, we rescalc, i.e., divide by a scaling factor r, the remaining

lifetimes of the operational components at precisely the same instances at which clocks were re-

scheduled when u.ing the rechedulina technique The advantage of rei'Aling elnekq is that new

random lifetimes do not have to be generated. In our implementation, we actually altered the repair

clock rate instead of altering all of the failure clock rates. Since we are assuming that there is only

one repairman, this allows us to reschedule only one event, hence saving computational effort. In

order to avoid numerical problems with the likelihood ratio, we pretended that we actually changed

the failure clock rates and did nothing to the repair clock rate. The resulting likelihood ratio is
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exact., the same as in the reschcdulinlg case when using Rcaled condtilonal distfibutiom for the bi-

ased distributions.

In the experimental results discussed below, the rescaling technique was used to implement im-

portance sampling in all of the models except for the maintenance model, in which rescheduling

was used. It should be noted that the aniot'nt of CPU time needed to simulate a fixed number of

events using importance sampling took an extra 10% to 150% over standard simulation, depending

on the size of the model solved and the importance sampling implementation used. lowever, the

extra computation time needed is due to special "tricks' we had to use in CSIM in order to adjust

the event list of the simulator, and in a different implementation where we are able to directly access

the event list, there would be minimal extra cost. This observation is supported by experiments in

[ 10 ] when using importance sampling for simulating Markovian models.

6. Examples and Discussions

In this section we use three examples to illustrate the effectiveness of the proposed importance

sampling techniques. First, we use a small example to experiment with some heuristics for selecting

the new probability distributions which make the typically rare system failures occur more often.

Second, these heuristics are applied to a model of a fairly complex computing system to demon-

strate that the methods described in this paper are effective and that orders of magnitude reduction

in variance can be obtained in simulations of large models. We also show that the relative accuracy

of our estimate of unavailability when using our importance sampling technique is independent of

the magnitude of the unavailability. We use exponential failure and repair distributions in this ex-

ample to ascertain the correctness of the results obtained by comparing them against numerical re-

suits obtained from the SAVE package [ 7 ]. In the third example, we use Weibull failure

distribution and periodic maintenance for all individual components in the system. We study the

effect of the hazard rate (i.e., increasing, decreasing and constant failure rates) on the optimal

maintenance period. Such studies cannot be performed with existing analytical or numerical

methods.

6.1. Effects of Different Biased Failure Distributions

In this section, we use a small model to analyze the behavior of the variance when using our im-

portance sampling technique. In particular, we examine the effect on the stability and magnitude

of the estimated variance from how much we bias the system towards failure when using impor-

tance sampling.
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The model consists of two types of components, each having a redundancy of two. The failure

distributions of the components arc exponential, with the failure rate denoted by ). There is one

repairman, who services failed components in a FCI'S fashion, with repair times being exponen-

tially distributed and repair rate it = I.

We now examine the effect on the amount of variance reduction gained and the stability of the

variance by choosing different scaling factors r. Table I contains the values of the variance of the

amount of down time in a regenerative cycle after a specified number of simulated events for various

values of r when A = 10- 3, and Table 2 contains similar results when A = 10- 5 . If the probability

of system failure is small, then the variance of the down time is the dominating term in the ex-

pression for the variance of steady state unavailability when estimated as a ratio (see Equation

(4.7)). By choosing the scaling factor r such that ,i/10 < r(n - I)A: It, where n is the total number

of components in the system, we obtain stable estimates of the variance quickly. Also, for r in this

range, we obtain the largest amount of variance reduction. It is also interesting to point out that

if we choose r too large, the variance actually starts to increase and becomes less stable. The in-

crease is caused by the added variability in the likelihood ratio. The above experiment was a useful

guide in selecting the scaling factor for larger models.

6.2. A Large Model

In this section, we provide empirical results from a large model, showing that the methods described

in this paper are also feasible and effective for larger systems than the ones described above. Also,

we demonstrate that the relative size of the confidence intervals when using importance sampling

is independent of the magnitude of the unavailability of the system, as long as a system failure is

still a rare event. The system we will examine is based on a model of a fairly complex computing

system (also considered in [ 13 ]), with its block diagram shown in Figure 1. The computing sys-

texn is composed of two sets of processors with 2 processors per set, two sets of controllers with 2

controllers per set, and 6 clusters of disks, each consisting of 4 disk units. In a disk cluster, data is

replicated so that one disk can fail without affecting the system. The "primary" data on a disk is

replicated such that one third is on each of the other three disks in the same cluster. Th1us, one disk

in each cluster can be inaccessible without losing access to the data. The connectivity of the system

is shown in Figure 1. All failure time distributions and repair time distributions are exponential.

We examine the model under two different sets of failure rates in order to show that the relative

width of the confidence interval is insensitive to the magnitude of the unavailability. In the first set,

the failure rates of processors, controllers and disks are assumed to be 1/2000. 1/2000 and 1/6000

per hour, respectively. 'These rates are much larger than one typically would find in the real world,
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but we chose these values so that we could obtain stable estimates of both the unavailability and

its variance using standard simulation in a reasonable amount of time. In the second set, we divide

all of the failure rates by 100, thus creating more realistic failure rates and causing the unavailability

to be even smaller. The repair rates for all components is I per hour. Components arc repaired

by a single repairman who repairs the components in a FCFS discipline. The system is defined to

be operational if all data is accessible to both processor types, which means that at least one

processor of each type, one controller in each set, and 3 out of 4 disk units in each of the 6 disk

clusters are operational. We also assume that operational components continue to fail at the given

rates when the system is failed.

Since all failure and repair time distributions are exponential, the resulting system is a continuous

time Markov chain. We designed the system in this manner so that we could obtain numerical

(non-simulation) results for the unavailability using the SAVF package [ 7, 9 ]. Since the system

has a kcw hundred thousand states, only bounds could be computed [ 13]. These bounds are very

tight and typically do not differ from the exact results significantly.

In Table 3, we have the estimates of unavailability and their 90% confidence intervals for the dif-

ferent sets of failure rates when using standard simulation and importance sampling after 1,024,000

simulated events. When using importance sampling, the scaling factor r was selected in a manner

analogous to the results from the small model example given in Section 6. 1. The first row of the

table contains the results from using the first set of failure rates. The width of the confidence in-

terval is reduced by a factor of 3 6 by using importance sampling over standard simulation, which

translates into a 13-fold improvement in run length. The results from using the second set of failure

rates are given in the secord row of the table. The results from standard simulation are meaningless

because the variance had not yet tabilized by the end of the simulation. I lowevcr, the results from

using importance sampling are quite accurate, with the size of the relative 90% confidence interval

being the same as that with the first set of failure rates when using imxrtance sampling. Thus,

our importance sampling technique is relatively independent of the magnitude of unavailability, and

as the occurrence of a system failure becomes rarer, the amount of improvement gained by using

our importance sampling technique over standard simulation increases, which is a favorable con-

clusion.

6.3. A Study of Effects of Maintenance Policies

We now demonstrate the types of studies that can be made with the aid of the importance sampling

schemes described in this paper. We examine a non-Markovian model with scheduled periodic

(determiniitic) maintenances and determine the effect of varying the length of time between main-
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tenances when component lifetime distributions have increasing failure rate (IFR), constant failure

rate, and decreasing failure rale (D1:R). Because of the complexity of the model, anailic results

are extremely difficult to obtain. Also, as we will see, since system failures occur very rarely,

standard simulation is very inefficient, and importance sampling is the only practical altemative.

We consider a simple maintenance model consisting of one type of component with a redundancy

of two. The distribution of the lifetime of each component is Weibull, with shape parameter a and

scale parameter P. Recall that if a = I, the component lifetime distributions are exponential. Also,

if a > 1, the distribution has an increasing failure (hazard) rate, and we have a decreasing failure rate

distribution if a < 1. In our experiments, we fixed P = 10- 5 and varied a. There is one repairman

who fixes failed components in FCFS fashion. The length of the repair times is the sum of a

constant c plus an exponentially distributed random quantity with rate P. ilie constant C corre-

sponds to the travel time of the repair man. In all of our simulations, c was 2.0 hours and the repair

rate p was 0.5 per hour. In addition, each component has a periodic scheduled maintenance every

d hours, where d is deterministic. One component has its first scheduled maintenance at the be.

ginning of the simulation, and the other component has its first scheduled maintenance after d12

iirnulated hours have passed. Thus, the maintenance cycles of the two components are staggered.

All scheduled maintenances take 0.5 hours. Also, after a component comes out of repair from a

failure. the next scheduled maintenance is skipped, and a maintenance is performed on a component

only if the other component is operational. A component is considered to be as good as new im-

mediately after completing a scheduled maintenance. There is a single repairman, different from the

one who re-airs faded components, who performs scheduled maintenances. Thc system is consid-

ered operational if at least one component i- operational, i.e., not failed or in scheduled mainte-

nance.

Figure 2 shows a plot of the unavailability versus the time between maintenances (d) for the dif-

ferent values of a. The graph was constructed by running simulations using the different parameter

values, plotting the point estimates, and using linear interpolation between the points. We ran all

the experiments long enough so that the relative half-width of the 90% confidence interval was less

than 10%. It is interesting to note how smooth the curves are for each of the value of a, thus

demonstrating the effectiveness of our importance sampling technique. Also note that as d -. 0,

the system becomes equivalent .o one without scheduled, periodic maintenances. This is demon-

strated by observing that the curve for a = 1.0 is beginning to flatten out for d> 1000.

The curves show that when component liietimes have exponential or DFR distributions, perform-

ing scheduleO maintenances actu.lly increases the unavailability of the system. When a = 1.0, the

component lifetime distributions have constant failure rate, which means that the conditional dis-
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tribution of a failure given that it is grcater than 1 docq not depend on 1. 'I hus. a component's reli-

ability does not improve by performing a maintcnamcc on it Actually, performing schedulcd

maintenances increases the system'q unavailability, which can be explained as follows Since a

scheduled maintenance for a component takes a deterministic amount of time, the conditional

probability of the other component failing during the maintenance time given that it has lived, say

s units of time already, is the same for all values of s Thus, by decreasing the time between main-

tenances, we are increasing the frequency with which the system can fail by having a maintenance

and then a failuic occurring. This, in turn, leads to the higher unavailability. We see similar results

when a = 0.75. However, since the component lifetime, now have DFR distributions, the effect is

more pronounced. This is because the conditional probability that a component fails given that it

has already lived i units of time is a decreasing function of t. Ilence, by decreasing the time between

scheduled maintenances, we not only increase the frequency with which the system can fail by

having one component in maintenance and the other failirg during the maintenance, but also the

conditional probability of the operational component failing during the maintenance of the other

component also increases. Thus, one should not perform scheduled maintenances on systems of

components with DFR distributions. When a = 1.25, the components have IJR lifetime distrib-

utions. In this case, the unavailability is large for small values of d. attains its minimum around

d = 500, and then increases. When a = 1.5, the unavailability behaves in a similar manner, wAth its

minimum being attained around d= 100. Hence, in a maintainable system composed of compo-

nents having IFR lifetime distributions, scheduled maintenances should be performed more fre-

quently at higher c--nponent failure rates.

7. Summary

In this paper we have described an approach for simulating models of highly dependable systems

with general failure and repair time distributions. The approach combines imporlance sampling

with event rescheduling in order to obtain variance reduction in such rare event simulations. The

approach is general in nature and allows us to effectively simulate a variety of features commonly

arising in dependability modeling. For example, in this paper we have shown how the technique

can be appied io sysiems wih pciodic juainiutnaimu. "e hav e CUI)IUIUd how One bieady-Aaw

availability is affected by the maintenance period and by different failure time distributions.

We described some of the trade-offs involved in the design of specific rescheduling rules, and dem-

onstrated their potential effectiveness in simulations of systems with both exponential, and non-

exponential failure and repair time distributions. We found that an effective method for selecting

the rescheduling distribution is by making the probability of a failure transition in the range from
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0.1 to 0.5. In addition, we used a rescaling of clock va;ucs as an inexpensive way to implement

rescheduling. While thiq can be cffective when the clock, have nearly constant ha/ard rates, different

rescheduling algorithms may be required when the clock densities are more general. The use of

importance sampling for estimating steady-state availability and MTTF requires that the underlying

model of the system has a regenerative structure. This requires either exponential failure distrib-

utions or general failure distributions with periodic (determiniitic) maintenance. On the other hand,

the use of importance sampling for estimating transient measures, such as reliability, is conpletely

general and does no, require any assumption on the failure and the repair processes.

We are currently in the process of implementing importance sampling for estimating reliability,

MfTI and interval availability in large models (here, we have only experimented with the esti-

mation of these measures in small models). We are alo working on the problem of estimating the

gradient of dependability measures in non-Markovian models using importance sampling.
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E i~ents r = 10 r = 102 r = 3.3 x 102 r = 10 r0'

1000 r,.II x 10-1 1.76.1 x 10- 1 1.745 x 10- s  3.218 x 10" 3.617 x I0 ' "

,1000 2.335 x 10 . ' 2.654 x 10- ' 1.6.13 x 10- 5 1.3198 x 10 -  1.8,15 x 10- 6
16000 2.138 x 10- ' 2.877 x 10- 1 1.4166 x 10-  2.380 x I1- 1.60 x 10 -

32000 2.111 x 10-  2.888 x 10- 3 1.600 x I - 5 7.072 x I 0 - "' 1.388 x 10"

64000 2.093 x 10- '  2.896 x 10- s  1.579 x 10- r 1.189 x I0-4 1.288 x 10"
96.. 000 2.091 x 10 -  2.708 x 10- 5 1.8,55 x 10-' 9.191 x 10-' 2.938 x 10 -

128000 2.032 x 10 - 4  2.840 x 10 -  1.935 x I0 - 5 7.876 x 10- 2.212 x I0 -1

lable I: Fslitnaled varinnre ordown time in it cvcle for g-statr model (A = 10- ' )
using different scaliig farlors r

IIcnts I r= 0 r = 10, T = 17 7 r = I,, r = 3.3 x 10' r = i0'
1000 N/A N/A j5.22 x I -0 - .772 x It - ' 1.767 x In -" 2.971 x 10-9
4000 N/A 3.557 x i0- 1 1.463 x - 2.7(I x I 1- ' !.677 x I(" 1.513 x 0
1(000 N/A 1.528 x 1(-7 2.120 x I) - ' 2.8 x IO - 9 2.391 x I0 - 4 2.112 x 10- 4
32000 N/A 1.987 x 10- 7  1.887 x I - 8 2.829 x 10- 9  3.071 x 10 - 9  7.025 x 10- '
6,110) 9.168 x 2.107 x I (-7 1.918 x 10 -  2.903 x I -i 2.1( x 10- l' 5.537 x 10-'
9000 T6.6,17xI( -  2.088 x 10-- 1.91.1 x 1O-S 2.729 x 10 -9  2.299 x " ,.36 x 10-

128000 ,I.9R6 x l0 - l 1.8,16 x 1o-7j 1.960 x 10- 81 2.879 x I0 - ' 2.326 x IO-" 5 x 10

lable 2: Estimated varianre or down time in a cycle for 9-stale model (A = I-)
using different scaling factors r

flNumerical Standard hmnprtanr Sealing
Result Simulation Sampling I In'tor r

4.0515 x I (1-6 1.12 1 x 10- 6 ,1.12.1 x I(I -  1(2

±-13.6% ±3.8%
,I.00 x 1 I " 6.165 x 10- '" ,I.027 x 10(1- 1"  11)

-±-159.5% +3.7%

'rable 3: Fstimates of unavailability and 90% confidence inlervals for a large
model (1,021,000 events)
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ABSTRACT
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system. Also, we study the effect of periodic maintenance on systems with components having

increasing and decreasing failure rate.
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